PII: S0040-4039(96)01601-2

TiCl₄ Mediated LiBH₄ Reduction of β -Ketophosphine Oxides: a High Stereoselective Route to the Synthesis of anti- β -Hydroxyphosphine Oxides.

Giuseppe Bartoli*, Marcella Bosco and Letizia Sambri

Dipartimento di Chimica Organica "A.Mangini", v.le Risorgimento, 4, I-40136, Bologna, Italy

Enrico Marcantoni

Dipartimento di Scienze Chimiche, via S.Agostino 1, I-62032 Camerino (MC), Italy

Abstract: The reduction of an α -alkyl- β -ketophosphine oxide with LiBH₄ in presence of a strong chelating agent, such as TiCl₄, gives the corresponding β -hydroxyphosphine oxide in high yields and with high anti-diastereoselectivity independently from the size of both the α - and β -alkyl chains. Copyright © 1996 Elsevier Science Ltd

In the past years great attention has been devoted to the study of the Horner¹ reaction for the construction of stereodefined carbon-carbon double bond², since this methodology can offer some advantages over the more widely used Wittig and Wadsworth-Emmons approaches³. At variance with reactivity of phosphonium ylides and phosphonate carbanions, the condensation of a lithium alkylphosphine oxide (2) with an aldehyde is generally irreversible and leads to stable products with good *anti*-selectivity (*anti*-4), as shown in Scheme 1. *Anti*-4 can be isolated as solid crystalline compounds and purified from the small amount of the *syn* isomer prior to submit them to stereospecific decomposition to Z-alkenes 5.

Lithium alkylphosphine oxide derivatives show great synthetic flexibility. Starting from 1 it's possible to plan a synthesis of E-alkenes via a variant of the original Horner approach (called Warren variant)⁴: the reduction of β -ketophosphine oxide 3 (obtained from the reaction of 2 with an ester) with NaBH₄ in MeOH at 0 °C leads to syn-4 which in turn stereospecifically give E-alkenes 5.

Scheme 1

Serious limitations remain: a very modest selectivity is observed when R^1 in 1 or R^2 in the aldeyde are α -branched alkyl chains². In addition, in these cases the Z route is totally ruled out owing to the difficult in separation of the syn and anti isomers.

Recently Warren found⁵ that the ketones 3 carrying in α -position a secondary alkyl substituent (R¹= iPr or Chx) can be converted with high selectivity into hydroxy derivatives *anti*-4 if the reduction process is carried out under Luche's conditions. However this methodology represents only a partial solution of the problem, since random selectivity is observed with linear α -alkyl substituents.

We report now a new general approach to anti- β -hydroxyphosphine oxides 4 based on the reduction of β -ketophosphine oxides 2 with LiBH₄⁶ in THF at low temperature in the presence of a strong chelating agent as TiCl₄⁷. As shown in Table 1, the reduction of 3a-i into anti-4a-i, under these conditions, proceeds with high yields and high selectivity, independently from the size of R¹ and R² (α -branched or linear substituents). In addition, our methodology shows a diastereoselectivity superior to previously reported procedures. For example compounds anti-4a anti-4b and anti-4i were obtained from reaction of 2 with the appropriate aldehyde in 88/12, 79/21 and 53/47 anti/syn purity respectively². The reduction of ketones 3a and 3i under Luche conditions gives anti-4a in 30/70 and anti-4i in 96/4 anti/syn ratio². TiCl₄ mediated reduction of 3a, 3b and 3i affords anti-4a, anti-4b and anti-4i respectively in 92/8, 98/2 and 97/3 anti/syn purity.

Table 1: Stereoselective reduction of β-Ketophosphine Oxides with LiBH₄-TiCl₄.

entry	compound	\mathbb{R}^1	R ²	product	yield%	anti/syn ^a	isolated anti (%)b
1	3a	Me	Ph	4a	98	90/10	81b
2	3b	Me	Chx	4 b	97	98/2	88p
3	3 c	n-Pr	Bu	4 c	95	87/13	78 ^b
4	3d	n-Pr	≕ −Ph	4d	90	98/2	78¢
5	3e	PhCH ₂	≕ −Ph	4 e	92	96/4	85 ^c
6	3f	PhCH ₂	Ph	4 f	95	98/2	89p
7	3 g	PhCH ₂	i-Pr	4 g	92	94/6	80c
8	3h	PhCH ₂	Me	4h	96	75/25	58 ^b
9	3i	Chx	n-Pr	4 i	95	97/3	88c

- a) The anti/syn ratios were determined by ¹H NMR analysis.
- b) The *anti*-isomers were isolated by flash cromatography (SiO₂, Et₂O/petroleum ether=9/1) or acetone/petroleum ether=2:1.
- c) The anti-isomer was isolated by crystalization from THF/petroleum ether.

A typical procedure follows. TiCl₄ (1.5 eq., solution in CH₂Cl₂) was added to a solution of **2** in CHCl₃ or CH₂Cl₂ at -30°C. After 1h the mixture was cooled at -78°C and LiBH₄ (1.5 eq., solution in THF) was added. The reaction was stirred for 2h at this temperature, then allowed to reach room temperature and quenched with diluted HCl (10%). Usual work-up gave the crude product in high purity⁸. Most other reducing agents tried (NaBH₄, LiBHEt₃, REDAL) gave comparable diastereoselectivity, but lower yields and recovery of starting materials **3**, due to the more basicity of these reagents respect to LiBH₄.

 β -Ketophosphine oxides 3 were previously prepared⁴ (Scheme 2) by reaction of 1 eq of the suitable ester with 2 eq of the lithium derivative 2, necessary for the complete conversion of the ester; infact 1 eq of 2 is consumed in the abstraction of the very acidic α -proton of the β -ketophosphine oxide. This procedure suffers from separation problems and low conversion of the most valuable product 2.

1 BuLi 2 R²COOEt
$$Ph_2P$$
 R^2 Ph_2P R^2 R^2

We modified this methodology (Scheme 3) by simply metalating 1 with 2.5 eq of a strong not nucleophilic base, such as lithium tetramethylpiperidine (LTMP), which prevails over 2 in the metallation of 3. In that manner anion 2 is exclusively involved in the reaction with the ester and β -ketophosphine oxides 3 are obtained in high yields based on 1.

1 LTMP 2
$$R^2COOEt$$
 Ph_2P Q R^2 Ph_2P Q Ph_2P Q R^2 R^3 R^4 R^4 R^4 R^4 R^4 R^4 R^4 R^4

A typical procedure follows. BuLi (2.3 eq) was added to tetramethylpiperidine (2.5 eq) at -30 °C. After 30 min product 1 (1 eq) was added and the mixture turned immediately to red. After 1h the mixture was cooled to -78°C and the ester (2.5 eq) was added. Two hours later, the reaction was allowed to reach room temperature and quenched with diluted HCl (10%). Usual work-up and crystallization from THF gave product 3 in high purity. β-ketophosphine oxides 3 were obtained in the following yields: 3a 88%, 3b 87%, 3c 77%, 3d 79%, 3e 75%, 3f 90%, 3g 85%, 3h 90%. This method as well as the previously reported procedures completely fails when R¹ is a branched alkyl substituent. Compound 3i was prepared *via* oxidation of the mixture of *anti* and *syn* 4i obtained by addition of the lithium salt of (cyclohexylmethyl)diphenylphosphine oxide to butyraldheyde⁵.

In conclusion, a new approach to a very efficient synthesis of $anti-\beta$ -hydroxyphosphine oxides has been successfully experimented. This new protocol offers the advantage over the previous ones of being unidirectional independently from the size of the alkyl substituents R^1 and R^2 . The efficiency of this methodology can be very likely ascribed to the chelation control on the β -ketophosphine oxide system exerted by TiCl₄, whose O-chelating

power has been widely described for similar dioxygenated systems⁷. In other words, the six-membered complex between TiCl₄ and 3 is reasonably arranged in a preferential half-chair conformation¹⁰ with R¹ in pseudo-axial position (A, Scheme 4) in order to minimize steric interactions between R¹ and R² groups. The attack of the reducing agent occours at the less hindered side of chelate A leading to the *anti* reduction product.

$$Cl_{4}Ti = O$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

Studies are in progress to generalize this procedure to the synthesis of β -hydroxyphosphine oxides containing hetero-substituted alkyl chains.

Acknowledgement: This work has been carried out in the frame of the "Progetto di Finanziamento Triennale, Ateneo di Bologna".

REFERENCES AND NOTES

- 1. Horner, L, Pure Appl. Chem., 1964, 9, 225.
- 2. For a recent review of the use of diphenylphosphoryl group see: Clayden, J., Warren, S., Angew. Chem. Inter. Ed. Eng., 1996, 35, 241.
- 3. For a constructive comparison between Homer, Wadsworth-Emmons and Wittig reactions see: B. E. Maryanoff, A. B. Reitz, *Chem. Rev.* 1989, 89, 863.
- 4. Buss, A. D., Warren, S., J. Chem. Soc. Perkin Trans. I 1985, 2307
- 5. Hutton, G., Jolliff, T., Mitchell, H., Warren, S., Tetrahedron Lett. 1995, 36, 7905.
- 6. Maier, G., Seipp, U., Boese, R., Tetrahedron Lett. 1987, 28, 4515.
- 7. a) Reetz, M. T., Angew. Chem. Inter. Ed. Eng., 1984, 23, 556; b) Reetz, M. T., Acc. Chem. Res., 1993, 26, 462.
- 8. The structure of products syn-4 and anti-4 was determined by ¹H and ¹³C NMR analysis and furtherly verified by stereospecific decomposition with NaH in DMF to give the corresponding Z-olefins⁴. The structure of the unknown olefin derived from 4d was determined by ¹H NMR (J_{HHolefinic}=10.7 Hz). Poor results were obtained for compounds 4e-h containing a PhCH₂- group which gave the desired olefin in very low yields. This behaviour is quite surprising: infact in the synthesis of trisubstituted olefins⁹ no problem was found in the decomposition of products carrying a benzylic group
- 9. Bartoli, G., Marcantoni, E., Sambri, L., Tamburini, M. Angew. Chem. Inter. Ed. Eng., 1995, 34, 2046.
- a) Sarko, C.; Guch, I.C.; DiMare, M. J. Org. Chem. 1994, 59, 705; b) Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338.

(Received in UK 5 July 1996; revised 9 August 1996; accepted 15 August 1996)